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Abstract. We study the Bose-Einstein condensation for a 3-d system of ideal Bose gas which is harmon-
ically trapped along two perpendicular directions and is confined in between two slabs along the other
perpendicular direction. We calculate the Casimir force between the two slabs for this system of trapped
Bose gas. At finite temperatures this force for thermalized photons in between two plates has a classical
expression which is independent of �. At finite temperatures the Casimir force for our system depends
on �. For the calculation of Casimir force we consider only the Dirichlet boundary condition. We show
that below condensation temperature (Tc) the Casimir force for this non-interacting system decreases with
temperature (T ) and at T � Tc, it is independent of temperature. We also discuss the Casimir effect on
3-d highly anisotropic harmonically trapped ideal Bose gas.

PACS. 05.30.-d Quantum statistical mechanics – 05.30.Jp Boson systems – 03.75.Hh Static properties of
condensates; thermodynamical, statistical, and structural properties

Vacuum fluctuation of electromagnetic field would cause
an attractive force between two closely spaced parallel
conducting plates. This phenomenon is called Casimir ef-
fect and this force is called Casimir force [1–3]. In the
original paper [1] the Casimir force at zero temperature
(T = 0) was defined as

Fc(L) = − ∂

∂L
[E(L) − E(∞)] (1)

where E(L) is the ground state energy (i.e. the vacuum
energy) of the electromagnetic field in between the two
conducting plates separated at a distance L. However, it is
generalized [4] for any range of temperature and for any di-
electric substance in between two dielectric plates. Casimir
Effect is also generalized for thermodynamical systems [5].
At finite temperature T , the definition of Casimir force is
generalized as [6,7]

Fc(T, L) = − ∂

∂L
[ΩT (L) − ΩT (∞)] (2)

where ΩT (L) is the grand potential of the system in be-
tween the plates separated at a distance L.

We consider the Casimir effect for thermodynamical
system in particular for the case of Bose gas in between
two slabs. Geometry of the system on which some exter-
nal boundary condition can be imposed is responsible for
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Casimir effect. Thermalized photons (massless bosons) in
between two conducting plates of area A at temperature
T gives rise to the Casimir pressure as [8–10]

Fc(L)
A

∼ − π2
�c

240L4

[
1 +

16(kBT )4L4

3(�c)4

]
for

π�c

kBTL
� 1

∼ −kBTζ(3)
8πL3

for
π�c

kBTL
→ 0

(3)

where kB is the Boltzmann constant, c is the velocity of
light and L is the separation of the parallel plates. At
T → 0, Casimir pressure becomes − π2

�c
240L4 and it is only

the vacuum fluctuation which contributes to the Casimir
pressure. At high temperature i.e. for π�c

kBTL → 0, the
Casimir force for photon gas goes as L−3 and has a purely
classical expression independent of �. Casimir effect for
ideal massive Bose gas has been studied in [6]. It has
been shown that below the condensation temperature Tc,
Casimir force decreases with temperature [6].

Let us consider a system of trapped Bose gas in be-
tween two slabs of width L and consider the bosons of
mass m to be oscillating with the same angular frequency
(ω) along the two perpendicular openings of the slabs.
Let us also consider that the system is in thermodynamic
equilibrium with its surroundings at temperature T . The
system behaves as isotropic trapped harmonic oscillators
along two perpendicular directions and along the other
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perpendicular direction it behaves like particles is 1-d box.
At thermodynamic limit the system size must be greater
greater than the thermal de Broglie wavelength

√
π�2

2mkBT

of the particles. For a slab geometry of a 3-d system the
length scale along one direction is much less than that
along the other two perpendicular directions. For this sys-
tem of Bose gas we shall show that the Casimir force will
depend on �.

We define the thermodynamic limit as the total no. of
particles N → ∞, L√

π�2
2mkBT

→ ∞ and kBT
�ω → ∞ such that

Nω2

L = constant. Energy of a single particle state |n, j〉 of
this system of ideal Bose gas is En,j = (n + 1)�ω + π2

�
2

2mL2

where n = 0, 1, 2... and j = 1, 2, 3... Since the trapped
frequencies are the same for the two perpendicular direc-
tions the single particle energy state |n, j〉 has degeneracy
(n+1). At the thermodynamic limit we can write the sin-
gle particle energy as En,p = n�ω + p2

2m where p is the
momentum along the direction in which the particles are
free. At this limit we can also write the degeneracy (n+1)
as n. Considering the thermodynamic limit the total num-
ber of thermally excited particles is

NT =
∫ ∞

−∞

∫ ∞

0

n
1

e[ p2
2m +n�ω−µ]/kBT − 1

dn
Ldp

2π�
(4)

where µ is the chemical potential. Here the pre-factor(n) in
the integrand is the degeneracy. Bose condensation tem-
perature (Tc) is defined as a temperature where all the
particles are thermally excited and below that tempera-
ture a macroscopic number of particles come to the ground
state [11–13]. At T ≤ Tc the chemical potential goes to the
ground state energy. So

N =
∫ ∞

−∞

∫ ∞

0

n
1

e[ p2
2m +n�ω]/kBTc − 1

dn
Ldp

2π�

=
∞∑

i=1

∫ ∞

−∞

∫ ∞

0

ne
−i[p2]

2mkB Tc e
−i[n�ω]

kB Tc dn
Ldp

2π�

= (
kBTc

�ω
)2

1
2

L

λc
ζ(5/2) (5)

where λc =
√

π�2

2mkBTc
. So the condensation temperature is

Tc =
1

kB

[
2π�

6ω4

mL2

] 1
5

N
2
5 . (6)

However for a finite system the total no. of particles are
not going to infinity. The angular frequency ω also does
not go to zero. The length L also does not go to infinity.
For finite system we consider the thermodynamic limit as
N � 1, L �

√
π�2

2mkBT and kBT
�ω � 1 such that Nω2

L =
constant. For a slab geometry of a 3-d system the length
scale along one direction is much less than that along other
two perpendicular directions. Similarly the condition of
slab geometry for our system is

π2
�

2

2mL2
� �ω. (7)

We take �ω
kBT → 0. The ground state energy of our system

is [g = �ω + π2
�
2

2mL2 ]. Now the average no. of particles with
energy En,j is given by 1

e
[n�ω+ π2�2(j2−1)

2mL2 +µ′]/kBT −1

where

µ′ = g − µ ≥ 0 for bosons. At and below the condensate
temperature µ′ → 0. So for our system of trapped Bose
gas the grand potential is Ω = Ω(ω, L, T, µ′). For this
bosonic system we have the grand potential as

Ω = Ω(ω, L, T, µ′)

= kBT

∞∑
n=0

∞∑
j=1

(n + 1) log

⎡
⎣1 − e

−(n�ω+ π2
�
2(j2−1)

2mL2 +µ′)
kB T

⎤
⎦ .

(8)

The pre-factor (n + 1) of the above equation (8) is the
degeneracy of the single particle state. The number 1 of
this term (n + 1) contribute insignificantly to the Casimir
force. So we write n instead of (n+1) in the grand poten-
tial. In equation (8) we also replace j by (j′ + 1). So from
the above equation (8) we can write

Ω(ω, L, T, µ′) ≈

− kBT

∞∑
n=0

∞∑
j′=0

∞∑
i=1

n
e
− iµ′

kB T e
−ni�ω

kB T e−i(π( λ
L

)2[j′2+2j′ ])

i
(9)

where λ =
√

π�2

2mkBT . Since �ω
kBT → 0, converting the sum-

mation over n into the integration we can write

Ω(ω, L, T, µ′) = −kBT

[
kBT

�ω

]2 ∞∑
i=1

∞∑
j′=0

e−iµ′/kBT

i3

×
[
e

−πiλ2(j′2+2j′)
L2

]

= −kBT

[
kBT

�ω

]2 ∞∑
i=1

∞∑
j′=0

e−iµ′/kBT

i3

×
[
e

−πiλ2j′2
L2

][
1 − 2j′

πiλ2

L2
+ 2j′2

(
πiλ2

L2

)2

− 4
3
j′3
(

πiλ2

L2

)3

+ ...

]
. (10)

Since λ
L 	 1, higher order terms of the above series

would contribute insignificantly. From Euler-Maclaurin
summation formula we convert the summation over j′ to
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integration. So from equation (10) we have

Ω(ω, L, T, µ′) =

− kBT

[
kBT

�ω

]2 ∞∑
i=1

e−iµ′/kBT

i3

[(∫ ∞

0

e
−πiλ2j′2

L2 dj′ +
1
2

)

− 2
πiλ2

L2

(∫ ∞

0

j′e
−πiλ2j′2

L2 dj′ − 1
12

)

+ 2
[
πiλ2

L2

]2(∫ ∞

0

j′2e
−πiλ2j′2

L2 dj′
)

−4
3

[
πiλ2

L2

]3(∫ ∞

0

j′3e
−πiλ2j′2

L2 dj′ +
6

720

)
+ ...

]
. (11)

From the above equation (11) we have

Ω(ω, L, T, µ′) = − kBT

[
kBT

�ω

]2 ∞∑
i=1

e−iµ′/kBT

i3

×
[

L

2λi1/2
− 1

2
+

π

2
i1/2 λ

L
+ O

([
λ

L

]2)]
.

(12)

Let us now calculate the Casimir force. At T ≤ Tc we put
µ′ → 0. So from equation (12) we have

Ω(ω, L, T, 0) = −kBT

[
kBT

�ω

]2 [
L

2λ
ζ(7/2) − 1

2
ζ(3)

+
π

2
ζ(5/2)

λ

L

]
. (13)

Here the first term of equation (13) is

Ωb = −kBT

[
kBT

�ω

]2 [
L

2λ
ζ(7/2)

]
. (14)

It is the bulk term of the grand potential. From our
consideration of thermodynamic limit Nω2

L = constant.
So ΩT (∞) = Ωb. The second term of equation (13) is
(Ωs) = kBT [kBT

�ω ]2[12ζ(3)]. It is the surface term of the
grand potential. The third term of equation (13) is the
Casimir term of the grand potential. We say it Casimir
potential. Now putting λ =

√
π�2

2mkBT in equation (13) we
have the Casimir potential as

Ωc = −kBT

[
kBT

�ω

]2√
π�2

2mL2kBT

π

2
ζ(5/2). (15)

From equations (15), (5) and (6) we can write

Ωc = −N

[
T

Tc

]5/2
π2

�
2

2mL2
. (16)

So, at T ≤ Tc, from equations (2), (13), (14) and (16) we
have the expression of Casimir force as

Fc(T, L) = −N

[
T

Tc

]5/2
π2

�
2

mL3
for T ≤ Tc. (17)

Finally from equation (18) we have a macroscopic Casimir
force. The expressions of Casimir force in equation (18)
shows that, the finite temperature Casimir force for this
particular system depends on �. These expressions are no
longer classical.

Above the condensation temperature, µ′ > 0. At T �
Tc, the expression of total number of particles, instead of
equation (5) can be written as

N =
(

kBT

�ω

)2 1
2

L

λ
g5/2(e−µ′/kBT ) (18)

where and g5/2(e−µ′/kBT ) is Bose-Einstein condensation
function which is defined as g5/2(x) = x + x2

25/2 + x3

35/2 +
x4

45/2 + ...

So, at T � Tc, from equation (12), with trivial manip-
ulation we get the Casimir potential as

Ωc = −kBT

[
kBT

�ω

]2 ∞∑
i=1

e−iµ′/kBT

i3

[
π

2
i1/2 λ

L

]

= −kBT

[
kBT

�ω

]2
πλ

2L
g5/2(e−µ′/kBT )

= −πNkBT

(
λ

L

)2

= −N
π2

�
2

2mL2
. (19)

So, at T � Tc, from the definition of Casimir force we have

Fc(T, L) = −N
π2

�
2

mL3
for T � Tc. (20)

So, at temperatures T � Tc, the Casimir force is indepen-
dent of temperature.

In case of 3-d harmonically trapped Bose gas whether
Bose-Einstein condensation has been achieved is experi-
mentally determined from the speed distribution of the
atoms. But, for this system the appearance of Casimir
force at some temperature (Tc) and the reduction of this
force below this temperature with T 5/2 law may signalize
the occurrence of BEC. With 109 hydrogen atoms Bose-
Einstein condensation has been performed [14]. Typical
Casimir force of the order of 10−12 N with L ∼ 10−7 m has
been experimentally performed [15]. For the experimental
set up if we choose ω ∼ 100 s−1, L ∼ 10−7 m, N ∼ 109

then the slab condition (7) will be satisfied for light alkali
atoms. These values of parameters will give Tc ∼ 10−5 K
and Fc(T, L) ∼ 10−12 Newton for alkali atoms.

However, we can think of the Casimir effect for 3-d
harmonically anisotropic trapped Bose gas. We take very
asymmetric harmonic trap with two different frequencies
(ω, ωo) such that ωo � ω. For this system single particle
energy is E(n, no) = (n+1)�ω+(no+ 1

2 )�ωo where n, no =
0, 1, 2... For this type of trap geometry we write the grand
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potential as

Ω = Ω(ω, ωo, T, µ′)

= kBT

∞∑
n=0

∞∑
no=0

(n + 1) log
[
1 − e

−(n�ω+no�ωo+µ′)
kBT

]
.

(21)

Here µ′ = (�ω + 1
2�ωo − µ). At and below the conden-

sation temperature µ′ = 0. Putting µ′ = 0 in the above
equation (21) and from the similar type of calculations as
shown above we can write the grand potential as

Ω = −kBT

∞∑
i=1

[(
kBT

�ω

)2 1
i3

+
(

kBT

�ω

)
1
i2

]
1

(1 − e
− i�ωo

kB T )
.

(22)
Neglecting the contribution of the second term of the
square bracket of the above equation and expanding the
exponential term into series and with a trivial manipula-
tion we get

Ω = −kBT

(
kBT

�ω

)2 [(
kBT

�ωo

)
ζ(4) +

1
2
ζ(3)

+
1
12

(
�ωo

kBT

)
ζ(2) + O

([
�ωo

kBT

]2 ])]
. (23)

The expression of the total number of particles for this
system is [12] N = (kBTc

�ω )2 kBTc

�ωo
ζ(3). The third term of

the above equation (23) is the Casimir potential (Ωc).
For this geometry we also see that the Casimir potential
Ωc = − 1

12 (kBT
�ω )2ζ(2)�ωo = N �ωoζ(2)

12kBTcζ(3) [
T
Tc

]2�ωo. For this
system of 3-d trapped geometry, below Tc, the Casimir
potential is quadratic in temperature.

Due to the symmetry of the wave function an ‘effective
attracting force’ sets in between the ideal Bose particles of
different quantum mechanical states. If the system size is
finite then this ‘effective attracting force’ considerably re-
duces the pressure of the system. In other words this force
gives rise to thermodynamic Casimir force. At T < Tc,
a macroscopic no. particles come to the ground state.
There is no ‘effective attracting force’ for the particles in

a single particle state due to wave function symmetry. So,
at T < Tc, the macroscopic no. of particles in the ground
state would not contribute to the Casimir force. Due to
this fact, below Tc, Casimir force decreases as we decrease
the temperature. At T � Tc, the Casimir force for this
non-interacting system is independent of temperature for
the slab geometry. But, at T � Tc, the Casimir poten-
tial decreases with temperature for anisotropic geometry
of ideal trapped Bose gas. However at very high temper-
ature (T � Tc) and in the classical limit, Bose-Einstein
statistics will be ineffective and the Casimir Force will van-
ish. Below Tc the thermodynamic Casimir force reduction
is the signature of Bose-Einstein condensation.

Several useful discussions with Jayanta Kumar Bhattacharjee
of I.A.C.S. and with Debnarayan Jana of C.U. are gratefully
acknowledged.
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